
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Pattern Matching Algorithm for Radar Cross Section

Anomaly Detection

Daniel Mulia Putra Manurung - 13522043

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): danielmuliaputraolo@gmail.com

Abstract—This paper discusses the application of pattern

matching algorithm aimed at detecting anomalies in Radar Cross

Section (RCS). Radar Cross Section proof to be critical in various

fields, aerospace, military, defense, to help identifying and

classifying objects detected. The usage of detecting anomalies in

Radar could enhance the reliability and safety potential of a

system that is embedded with it.

Keywords—Pattern Matching, Radar Cross Section, Anomaly

Detection, Algorithm

I. INTRODUCTION

Radar Cross Section is a measure of how detectable on
object is by a radar. It represents on how significant the radar
signal reflected back by an object. An accurate detection of a
Radar Cross Section system is very vital for many fields, for
instance an air traffic control, national security, and military
operations.

Anomalies in a Radar Cross Section can indicate a presence
of an object. An object detected by a radar cross section can
varies from birds to airplane. The Radar Cross Section of an
object usually represented by a scalar number, which exist in a
certain position in a radar, indicating its presence. The ability
to identify a specific object accurately from it’s Radar Cross
Section is needed to enhance the reliability and efficiency
usage of it. Given the scalar representation of RCS, several
approach can be used to implement this, in which one of it is
pattern matching algorithm.

This paper introduces a pattern matching algorithm
designed to detect anomalies in an RCS data. This paper will
provide a program to simulate the process of detecting a
specific object from a Radar.

II. THEORETICAL BASIS

A. Radar Cross Section

Radar Cross Section is a measure of how much signal is
reflected back from an object to a radar receiver. It is measured
through a function consisting of the object’s size, shape,
material, and orientation relative to the receiver radar. The
Radar Cross Section Value typically represented in a scalar
value in square meters that determines how detectable an
object in a radar system. Radar Cross Section plays a crucial

role in various applications, most relating to aviation and
military.[1]

B. Pattern Matching

Pattern Matching Algorithms are algorithms that serve as
an essential tool in computer science, widely used to locate
specifics patterns within a much larger dataset. This algorithm
is mainly used in text processing, bioinformatics, image
recognition, and signal analysis.[3]

Types of pattern matching algorithm

- Exact Pattern Matching

This approach searches for an exact match of a pattern
within a text or data. Much common used algorithm
such as Knuth Morris Pratt and Boyer Moore are well
known for their efficiency in exact pattern matching.

- Approximate Pattern Matching

Unlike the exact pattern matching this approach allows
a certain margin of mismatch. This approach is useful
in scenarios where the exact match is has an almost to
nothing chance of occurring. An approximate pattern
matching algorithm uses many types of approximation,
one of it is Hamming Distance.

A pattern matching algorithm can also be applied on two-
dimensional pattern and dataset. This method provides a much
more accurate result in many cases such as image processing
and any cases involving cross-correlation.

C. Hamming Distance

Hamming Distance is a fundamental concept in

information theory and computer science. It measures the

number of positions at which corresponding symbols of two

strings or matrices of equal length differ. This metric is crucial

for detecting errors in data transmission and measuring

differences between data entities.

The formal definition of Hamming Distance is the

following: for two strings or matrices A and B of equal size,

the Hamming Distance H is defined as the number of positions

at which the corresponding elements are different.

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

H(A, B) = Σ n
 i = 1 I (Ai ≠ Bi)

 for one dimensional comparison and,

H(A, B) = Σ n
 i,j = 1 I (Aij ≠ Bij)

 for two-dimensional comparison.[2]

III. ALGORITHM

The provided code simulates the process of detecting
specific patterns within radar data, which is essential in various
applications such as identifying aircraft in radar images. This
process involves generating synthetic radar data, searching for
patterns using a 2D Boyer-Moore search algorithm, and
calculating the similarity using Hamming distance. Each step
will be explained in detail, including code snippets and a step-
by-step breakdown of the logic.

To simulate a pattern matching algorithm on a radar data,
the first thing we need is a radar data and the pattern to identify
a specific object on a radar.

Generating a synthetic radar data is the first step in our
simulation. This data simulates radar readings that can be used
to test the pattern matching algorithm. The generated data
matrix includes a high value region representing a significant
radar return, such as aircraft, surrounded by gradually
decreasing value.

Code snippet:

 This code snippet provides the initialization of radar matrix
generation. The code snippet initializes the radar data, and
matrix tracker to ensure that each cell in the data matrix has
already passed the generating process. The threshold is a
variable to determine the highest number possible to generate
and the high x and high y is the coordinate in which the high
number will be generated in.

 This code snippet provides additional information on
generating the radar data. This includes neighbor processing,
that only allows a neighboring cell to have a maximum
difference of two, and the tracking of each cell to make sure
each and every cell passes the generation process.

 The second step after the generating process is the main
pattern matching algorithm. In this specific case, the algorithm
used will be Boyer Moore algorithm. Boyer Moore allows a lot
more skip in the string sequence compared to Knuth Morris
Pratt due to the looking glass method and given the data being
compared is a matrix of numbers, giving it the advantage
because of the high possibility of high variation in the
compared string.

 The Boyer-Moore algorithm stands out as an efficient
method for integer matrix pattern matching, particularly due to
its ability to handle large numeric values. This algorithm excels
in scenarios where the numbers being compared can vary
significantly in size, as it focuses on efficiently skipping
sections of the matrix based on mismatches, leveraging
preprocessing steps that optimize searches. The algorithm
preprocesses the pattern matrix to construct a "bad character"
table, which allows it to skip over large sections of the matrix
when a mismatch is found, leading to significant performance
gains. This approach is particularly advantageous in integer
matrix comparisons where numeric values can be large and
diverse, ensuring that the algorithm remains efficient even
when dealing with matrices of considerable size.

 In addition, the Boyer-Moore algorithm's adaptation to 2D
matrix matching further enhances its efficiency. By treating
each row or column of the matrix as a string and applying the
algorithm's principles, Boyer-Moore efficiently identifies
matching submatrices by leveraging its ability to skip over
non-matching sections. This adaptability makes it a powerful
choice for integer matrix pattern matching, ensuring optimal

def generate_radar_data(rows, cols):
 radar_data = [[0] * cols for _ in
range(rows)]
 generated = [[False] * cols for _ in
range(rows)]

 high_threshold = random.randint(5, 9)

 high_x = random.randint(0, rows - 1)
 high_y = random.randint(0, cols - 1)

 radar_data[high_x][high_y] =
high_threshold
 generated[high_x][high_y] = True

 directions = [(-1, 0), (1, 0), (0, -
1), (0, 1)]

Queue for cells to be processed
 queue = [(high_x, high_y)]

 while queue:
 x, y = queue.pop(0)

 # Process all neighbors
 for dx, dy in directions:
 nx, ny = x + dx, y + dy

 if 0 <= nx < rows and 0 <= ny
< cols and not generated[nx][ny]:
 # Generate a value within
range from the high number
 radar_data[nx][ny] =
max(0, radar_data[x][y] -
random.randint(0, 2))
 generated[nx][ny] = True
 queue.append((nx, ny))

 return radar_data

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

performance even when faced with matrices that contain high-
value integers and varying patterns.

 In our study, we used the Boyer-Moore algorithm to
find patterns in radar data more efficiently. This algorithm is
known for being great at searching strings, but we adapted it to
work with 2D matrices, like the radar data we had. We went
through the radar data matrix and compared small sections of it
to the pattern we were looking for. This helped us find where
the pattern showed up in the radar data.

The Boyer-Moore algorithm has a neat trick where it can
skip over parts of the matrix where it's sure the pattern won't
be. This made our search much faster. We used this trick to
focus on the parts of the radar data where the pattern was more
likely to show up. It made our pattern matching process
quicker and better overall.

When the algorithm found a possible match, we calculated
something called the Hamming distance. This told us how
much the small section of radar data differed from the pattern.
By finding the smallest Hamming distance, we pinpointed
exactly where in the radar data the pattern was closest to what
we were looking for. This was really helpful for tasks like
finding specific things in radar data or figuring out when
something strange showed up.

 To see how accurate each match was, we calculated the
percentage of closeness based on the size of the pattern. This
gave us a number that showed how well the small section of
radar data matched the pattern we wanted. It helped us
understand how good the matches were and made it easier to
make decisions about the radar data.

 This code snippet provides a hamming distance
function that returns the hamming distance between two
matrices. The calculate_hamming_distance function plays a
crucial role in our pattern matching algorithm by measuring
how different two matrices are. This function takes two
matrices, matrix1 and matrix2, and compares them element by
element. First, it determines the number of rows and columns
in the matrices to set up the comparison correctly. Then, it
initializes the hamming distance variable to zero, which will
keep track of the total number of differences between the
corresponding elements of the two matrices.

 The function then uses nested loops to iterate through each
element in the matrices. For each element at position (i, j), it
checks if the values in matrix1 and matrix2 are different. If
they are, it increments the hamming distance by one. This
process continues until all elements have been compared.
Finally, the function returns the total Hamming distance, which
represents the number of differing elements between the two
matrices. This value is critical for determining how closely a
submatrix in the radar data matches the pattern we are looking
for, allowing us to identify the best match location accurately.

 The Boyer-Moore algorithm is particularly effective for
matrix comparison of integers due to its advanced
preprocessing and efficient skipping techniques. When
comparing matrices, the algorithm constructs "bad character"
and "good suffix" tables during the preprocessing phase. These

def boyer_moore_2d_search(radar_data,
pattern):
 radar_rows, radar_cols =
len(radar_data), len(radar_data[0])
 pattern_rows, pattern_cols =
len(pattern), len(pattern[0])
 best_match_location = (-1, -1)
 best_hamming_distance = float('inf')

 for i in range(radar_rows -
pattern_rows + 1):
 for j in range(radar_cols -
pattern_cols + 1):
 submatrix =
[row[j:j+pattern_cols] for row in
radar_data[i:i+pattern_rows]]
 current_hamming_distance =
calculate_hamming_distance(submatrix,
pattern)

 if current_hamming_distance <
best_hamming_distance:
 best_hamming_distance =
current_hamming_distance
 best_match_location = (i,
j)

 pattern_size = pattern_rows *
pattern_cols
 hamming_distance_percentage =
(best_hamming_distance / pattern_size) *
100

 return best_match_location,
hamming_distance_percentage

def calculate_hamming_distance(matrix1,
matrix2):
 rows = len(matrix1)
 cols = len(matrix1[0])
 hamming_distance = 0

 for i in range(rows):
 for j in range(cols):
 if matrix1[i][j] !=
matrix2[i][j]:
 hamming_distance += 1

 return hamming_distance

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

tables enable the algorithm to skip large sections of the matrix
where a match is unlikely, reducing the number of comparisons
significantly. This is especially beneficial for matrices with
high-value integers, where direct comparison algorithms would
involve extensive computation. By skipping over sections
where mismatches are detected early, Boyer-Moore ensures
that the overall comparison process is much faster compared to
traditional algorithms like Knuth-Morris-Pratt (KMP).

 Additionally, the Boyer-Moore algorithm's ability to handle
large and varied data sets makes it suitable for applications
involving integer matrices, such as image processing and data
analysis. The algorithm's efficiency can be mathematically
represented and compared with other algorithms. For instance,
the average-case time complexity of Boyer-Moore is O(n/m),
where n is the length of the text and m is the length of the
pattern, compared to KMP's O(n) time complexity. This
reduction in complexity highlights Boyer-Moore's ability to
handle larger datasets more effectively by leveraging its
preprocessing steps to minimize unnecessary comparisons.

 To illustrate the efficiency of Boyer Moore algorithm, we
will consider the average time complexity. For Boyer Moore
algorithm the time complexity is the following:

TBM = O(n/m)

 Where n is the number of elements in the radar data matrix
and m is the number of elements in the pattern matrix. In
contrast, the Knuth Morris Pratt algorithm has a time
complexity of the following:

TKMP = O(n)

 Where n is the number of elements in the matrix data. But
the key advantage of the Boyer Moore algorithm is it’s ability
to skip sections of the matrix given the matrix is an integer
matrix. Suppose we have an N x N size of data matrix and an
M x M size of a pattern matrix, then the total comparisons for
Knuth Morris Pratt would be the following:

CKMP = N2

 For Boyer Moore algorithm, considering it skips a
significant chunk of comparison due to the looking glass and
mismatches, the number of comparisons is approximately the
following:

CBM = O(N2/M2)

 This shows that for larger matrices with substantial
differences between elements, Boyer Moore will perform much
fewer comparisons comparing to Knuth Morris Pratt, making it
a superior algorithm in comparing matrices of integer.

IV. ANALYSIS

Given the codes and the Boyer Moore algorithm, we
enhanced the original pattern matching algorithm by adding the
ability to handle multiple patterns. This lets us test the
algorithm's effectiveness with different shapes and sizes,
ensuring a more thorough evaluation of its performance in
detecting various features within radar data.

To do this, we defined several patterns, each with different
shapes and sizes, to simulate real scenarios in radar data

analysis. These patterns include asymmetrical shapes like
triangles and diamonds, which help test the algorithm's ability
to handle complex structures.

Here are the patterns we are using to simulate:

 With the given pattern, we have the following results:

 In other instances, the following result is received

patterns = [
 [
 [1, 0, 0],
 [1, 1, 0],
 [1, 1, 1]
],
 [
 [1, 2, 1],
 [2, 2, 2],
 [1, 2, 1]
],
 [
 [3, 1, 2, 1, 3],
 [1, 4, 3, 4, 1],
 [3, 3, 5, 3, 3],
 [1, 4, 3, 4, 1],
 [3, 1, 2, 1, 3]
]
]

Pattern 1 found starting at coordinates: (8,
10)
Hamming distance percentage of closeness:
100.00%
Pattern 2 found starting at coordinates: (3, 8)
Hamming distance percentage of closeness:
44.44%
Pattern 3 found starting at coordinates: (1, 8)
Hamming distance percentage of closeness:
36.00%

Generated Radar Data Matrix:
[0, 0, 0, 0, 0, 0, 1, 2, 4, 4, 4, 4, 4, 3, 2]
[0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 3, 1, 1, 0]
[0, 0, 0, 1, 1, 2, 3, 5, 5, 5, 5, 5, 4, 3, 2]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 5, 3, 2, 2]
[0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 5, 4, 2, 2, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1, 1, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 2, 2, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 And in some other, it results no match due to the lack of
object generated in the matrix.

 In our analysis, we tested multiple patterns, each of which
could represent different types of aircraft or other objects. For
instance, one pattern might correspond to the radar cross-
section (RCS) of a Boeing 737, another to an Airbus A380, and
a smaller pattern to a ballistic missile. These patterns help us
simulate realistic scenarios in radar data analysis where
detecting specific types of objects is crucial.

 By applying the Boyer-Moore 2D search algorithm to the
generated radar data, we determined the best match location
and the percentage of closeness for each pattern. These
patterns, representing various aircraft types, were effectively
identified within the radar data matrix, demonstrating the
algorithm's capability to handle diverse objects. In practice,
each pattern could represent an aircraft type, such as the
Boeing 737 or Airbus A380 for larger patterns, and a ballistic
missile for smaller patterns.

 For example, in our tests, a smaller pattern resembling a
ballistic missile yielded the highest accuracy. A pattern
representing a medium-sized aircraft like a Boeing 737 was
found with a good degree of accuracy. However, the largest
pattern, resembling an Airbus A380, had the lowest accuracy.
This result suggests that while the Boyer-Moore algorithm is
proficient in detecting large objects, the complexity and size of
such patterns can introduce challenges that reduce accuracy.

 In real-world applications, the radar cross-section (RCS) of
objects is much more complex than our simulated patterns. The
actual RCS varies with aspect angle, frequency, and other
factors, leading to more detailed and accurate detection results.
Despite this complexity, our test results demonstrate that the
Boyer-Moore algorithm can effectively match patterns of
different sizes and shapes in radar data. With further
refinement and more sophisticated pattern definitions, the
algorithm can achieve even higher accuracy in real-world
scenarios, making it a valuable tool for radar data analysis and
object detection. This ability to handle complex and varied
patterns ensures that the Boyer-Moore algorithm is not only
effective in theoretical tests but also holds significant promise
for practical implementations in detecting and identifying
various types of aircraft and missiles.

V. CONCLUSION

The Boyer-Moore algorithm is effective for pattern
matching in radar data.

Our tests with different patterns, representing various
aircraft and missiles, showed that the algorithm can accurately
find objects of different sizes and shapes. Smaller patterns, like
those for ballistic missiles, had high accuracy, while larger
patterns, like those for an Airbus A380, had some challenges
but still gave good results. This shows that the Boyer-Moore
algorithm is flexible and can meet various detection needs in
radar data.

With more adjustments, such as better pattern definitions
and considering real-world radar cross-sections, the algorithm's
accuracy and effectiveness can improve a lot. This means the
Boyer-Moore algorithm could become a very reliable tool for
finding and identifying a wide range of objects in real radar
applications.

Pattern 1 found starting at coordinates: (10,
6)
Hamming distance percentage of closeness:
88.89%
Pattern 2 found starting at coordinates: (6, 4)
Hamming distance percentage of closeness:
55.56%
Pattern 3 found starting at coordinates: (4, 5)
Hamming distance percentage of closeness:
36.00%

Generated Radar Data Matrix:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 1, 3, 4, 3, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 2, 2, 2, 4, 4, 3, 1, 1, 1, 1, 1, 1]
[0, 0, 0, 0, 1, 2, 3, 2, 2, 0, 0, 0, 0, 0, 0]
[1, 2, 2, 2, 2, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Pattern 1 found starting at coordinates: (4, 0)
Hamming distance percentage of closeness:
55.56%
Pattern 2 found starting at coordinates: (11,
3)
Hamming distance percentage of closeness:
44.44%
Pattern 3 found starting at coordinates: (9, 0)
Hamming distance percentage of closeness:
28.00%

Generated Radar Data Matrix:
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[5, 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[5, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[4, 4, 4, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
[4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

REFERENCES

[1] Ulaby, Fawwaz (1986). Microwave Remote Sensing: Active and
Passive, Volume 2. Artech House, Inc. p. 463.

[2] Waggener, Bill (1995). Pulse Code Modulation Techniques. Springer. p.
206.

[3] R. Munir, Pencocokan String dan RegEx. Bandung, West Java, 2024

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis

ini adalah tulisan saya sendiri, bukan saduran, atau terjemahan

dari makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Daniel Mulia Putra Manurung - 13522043

