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Abstract—This paper discusses the application of pattern 

matching algorithm aimed at detecting anomalies in Radar Cross 

Section (RCS). Radar Cross Section proof to be critical in various 

fields, aerospace, military, defense, to help identifying and 

classifying objects detected. The usage of detecting anomalies in 

Radar could enhance the reliability and safety potential of a 

system that is embedded with it. 
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I.  INTRODUCTION 

Radar Cross Section is a measure of how detectable on 
object is by a radar. It represents on how significant the radar 
signal reflected back by an object. An accurate detection of a 
Radar Cross Section system is very vital for many fields, for 
instance an air traffic control, national security, and military 
operations. 

Anomalies in a Radar Cross Section can indicate a presence 
of an object. An object detected by a radar cross section can 
varies from birds to airplane. The Radar Cross Section of an 
object usually represented by a scalar number, which exist in a 
certain position in a radar, indicating its presence. The ability 
to identify a specific object accurately from it’s Radar Cross 
Section is needed to enhance the reliability and efficiency 
usage of it. Given the scalar representation of RCS, several 
approach can be used to implement this, in which one of it is 
pattern matching algorithm. 

This paper introduces a pattern matching algorithm 
designed to detect anomalies in an RCS data. This paper will 
provide a program to simulate the process of detecting a 
specific object from a Radar. 

II. THEORETICAL BASIS 

A. Radar Cross Section 

Radar Cross Section is a measure of how much signal is 
reflected back from an object to a radar receiver. It is measured 
through a function consisting of the object’s size, shape, 
material, and orientation relative to the receiver radar. The 
Radar Cross Section Value typically represented in a scalar 
value in square meters that determines how detectable an 
object in a radar system. Radar Cross Section plays a crucial 

role in various applications, most relating to aviation and 
military.[1] 

B. Pattern Matching 

Pattern Matching Algorithms are algorithms that serve as 
an essential tool in computer science, widely used to locate 
specifics patterns within a much larger dataset. This algorithm 
is mainly used in text processing, bioinformatics, image 
recognition, and signal analysis.[3] 

Types of pattern matching algorithm 

- Exact Pattern Matching 

This approach searches for an exact match of a pattern 
within a text or data. Much common used algorithm 
such as Knuth Morris Pratt and Boyer Moore are well 
known for their efficiency in exact pattern matching. 

- Approximate Pattern Matching 

Unlike the exact pattern matching this approach allows 
a certain margin of mismatch. This approach is useful 
in scenarios where the exact match is has an almost to 
nothing chance of occurring. An approximate pattern 
matching algorithm uses many types of approximation, 
one of it is Hamming Distance. 

A pattern matching algorithm can also be applied on two-
dimensional pattern and dataset. This method provides a much 
more accurate result in many cases such as image processing 
and any cases involving cross-correlation. 

C. Hamming Distance 

Hamming Distance is a fundamental concept in 

information theory and computer science. It measures the 

number of positions at which corresponding symbols of two 

strings or matrices of equal length differ. This metric is crucial 

for detecting errors in data transmission and measuring 

differences between data entities. 

 

The formal definition of Hamming Distance is the 

following: for two strings or matrices A and B of equal size, 

the Hamming Distance H is defined as the number of positions 

at which the corresponding elements are different. 
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H(A, B) = Σ n
 i = 1 I (Ai ≠ Bi) 

 

 for one dimensional comparison and, 

 

H(A, B) = Σ n
 i,j = 1 I (Aij ≠ Bij) 

 

 for two-dimensional comparison.[2] 

 

III. ALGORITHM 

The provided code simulates the process of detecting 
specific patterns within radar data, which is essential in various 
applications such as identifying aircraft in radar images. This 
process involves generating synthetic radar data, searching for 
patterns using a 2D Boyer-Moore search algorithm, and 
calculating the similarity using Hamming distance. Each step 
will be explained in detail, including code snippets and a step-
by-step breakdown of the logic. 

To simulate a pattern matching algorithm on a radar data, 
the first thing we need is a radar data and the pattern to identify 
a specific object on a radar. 

Generating a synthetic radar data is the first step in our 
simulation. This data simulates radar readings that can be used 
to test the pattern matching algorithm. The generated data 
matrix includes a high value region representing a significant 
radar return, such as aircraft, surrounded by gradually 
decreasing value.  

Code snippet: 

  

 This code snippet provides the initialization of radar matrix 
generation. The code snippet initializes the radar data, and 
matrix tracker to ensure that each cell in the data matrix has 
already passed the generating process. The threshold is a 
variable to determine the highest number possible to generate 
and the high x and high y is the coordinate in which the high 
number will be generated in. 

 

 

 This code snippet provides additional information on 
generating the radar data. This includes neighbor processing, 
that only allows a neighboring cell to have a maximum 
difference of two, and the tracking of each cell to make sure 
each and every cell passes the generation process. 

 The second step after the generating process is the main 
pattern matching algorithm. In this specific case, the algorithm 
used will be Boyer Moore algorithm. Boyer Moore allows a lot 
more skip in the string sequence compared to Knuth Morris 
Pratt due to the looking glass method and given the data being 
compared is a matrix of numbers, giving it the advantage 
because of the high possibility of high variation in the 
compared string. 

 The Boyer-Moore algorithm stands out as an efficient 
method for integer matrix pattern matching, particularly due to 
its ability to handle large numeric values. This algorithm excels 
in scenarios where the numbers being compared can vary 
significantly in size, as it focuses on efficiently skipping 
sections of the matrix based on mismatches, leveraging 
preprocessing steps that optimize searches. The algorithm 
preprocesses the pattern matrix to construct a "bad character" 
table, which allows it to skip over large sections of the matrix 
when a mismatch is found, leading to significant performance 
gains. This approach is particularly advantageous in integer 
matrix comparisons where numeric values can be large and 
diverse, ensuring that the algorithm remains efficient even 
when dealing with matrices of considerable size. 

 In addition, the Boyer-Moore algorithm's adaptation to 2D 
matrix matching further enhances its efficiency. By treating 
each row or column of the matrix as a string and applying the 
algorithm's principles, Boyer-Moore efficiently identifies 
matching submatrices by leveraging its ability to skip over 
non-matching sections. This adaptability makes it a powerful 
choice for integer matrix pattern matching, ensuring optimal 

def generate_radar_data(rows, cols): 
    radar_data = [[0] * cols for _ in 
range(rows)] 
    generated = [[False] * cols for _ in 
range(rows)] 
     
    high_threshold = random.randint(5, 9) 
     
    high_x = random.randint(0, rows - 1) 
    high_y = random.randint(0, cols - 1) 
     
    radar_data[high_x][high_y] = 
high_threshold 
    generated[high_x][high_y] = True 
     
    directions = [(-1, 0), (1, 0), (0, -
1), (0, 1)] 
 
 
 

# Queue for cells to be processed 
    queue = [(high_x, high_y)] 
     
    while queue: 
        x, y = queue.pop(0) 
         
        # Process all neighbors 
        for dx, dy in directions: 
            nx, ny = x + dx, y + dy 
             
            if 0 <= nx < rows and 0 <= ny 
< cols and not generated[nx][ny]: 
                # Generate a value within 
range from the high number 
                radar_data[nx][ny] = 
max(0, radar_data[x][y] - 
random.randint(0, 2)) 
                generated[nx][ny] = True 
                queue.append((nx, ny)) 
     
    return radar_data 
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performance even when faced with matrices that contain high-
value integers and varying patterns. 

 

 In our study, we used the Boyer-Moore algorithm to 
find patterns in radar data more efficiently. This algorithm is 
known for being great at searching strings, but we adapted it to 
work with 2D matrices, like the radar data we had. We went 
through the radar data matrix and compared small sections of it 
to the pattern we were looking for. This helped us find where 
the pattern showed up in the radar data. 

The Boyer-Moore algorithm has a neat trick where it can 
skip over parts of the matrix where it's sure the pattern won't 
be. This made our search much faster. We used this trick to 
focus on the parts of the radar data where the pattern was more 
likely to show up. It made our pattern matching process 
quicker and better overall. 

 

When the algorithm found a possible match, we calculated 
something called the Hamming distance. This told us how 
much the small section of radar data differed from the pattern. 
By finding the smallest Hamming distance, we pinpointed 
exactly where in the radar data the pattern was closest to what 
we were looking for. This was really helpful for tasks like 
finding specific things in radar data or figuring out when 
something strange showed up. 

 To see how accurate each match was, we calculated the 
percentage of closeness based on the size of the pattern. This 
gave us a number that showed how well the small section of 
radar data matched the pattern we wanted. It helped us 
understand how good the matches were and made it easier to 
make decisions about the radar data. 

  

 This code snippet provides a hamming distance 
function that returns the hamming distance between two 
matrices. The calculate_hamming_distance function plays a 
crucial role in our pattern matching algorithm by measuring 
how different two matrices are. This function takes two 
matrices, matrix1 and matrix2, and compares them element by 
element. First, it determines the number of rows and columns 
in the matrices to set up the comparison correctly. Then, it 
initializes the hamming distance variable to zero, which will 
keep track of the total number of differences between the 
corresponding elements of the two matrices. 

 The function then uses nested loops to iterate through each 
element in the matrices. For each element at position (i, j), it 
checks if the values in matrix1 and matrix2 are different. If 
they are, it increments the hamming distance by one. This 
process continues until all elements have been compared. 
Finally, the function returns the total Hamming distance, which 
represents the number of differing elements between the two 
matrices. This value is critical for determining how closely a 
submatrix in the radar data matches the pattern we are looking 
for, allowing us to identify the best match location accurately. 

 The Boyer-Moore algorithm is particularly effective for 
matrix comparison of integers due to its advanced 
preprocessing and efficient skipping techniques. When 
comparing matrices, the algorithm constructs "bad character" 
and "good suffix" tables during the preprocessing phase. These 

def boyer_moore_2d_search(radar_data, 
pattern): 
    radar_rows, radar_cols = 
len(radar_data), len(radar_data[0]) 
    pattern_rows, pattern_cols = 
len(pattern), len(pattern[0]) 
    best_match_location = (-1, -1) 
    best_hamming_distance = float('inf') 
     
    for i in range(radar_rows - 
pattern_rows + 1): 
        for j in range(radar_cols - 
pattern_cols + 1): 
            submatrix = 
[row[j:j+pattern_cols] for row in 
radar_data[i:i+pattern_rows]] 
            current_hamming_distance = 
calculate_hamming_distance(submatrix, 
pattern) 
             
            if current_hamming_distance < 
best_hamming_distance: 
                best_hamming_distance = 
current_hamming_distance 
                best_match_location = (i, 
j) 
     
    pattern_size = pattern_rows * 
pattern_cols 
    hamming_distance_percentage = 
(best_hamming_distance / pattern_size) * 
100 
     
    return best_match_location, 
hamming_distance_percentage 

def calculate_hamming_distance(matrix1, 
matrix2): 
    rows = len(matrix1) 
    cols = len(matrix1[0]) 
    hamming_distance = 0 
     
    for i in range(rows): 
        for j in range(cols): 
            if matrix1[i][j] != 
matrix2[i][j]: 
                hamming_distance += 1 
     
    return hamming_distance 
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tables enable the algorithm to skip large sections of the matrix 
where a match is unlikely, reducing the number of comparisons 
significantly. This is especially beneficial for matrices with 
high-value integers, where direct comparison algorithms would 
involve extensive computation. By skipping over sections 
where mismatches are detected early, Boyer-Moore ensures 
that the overall comparison process is much faster compared to 
traditional algorithms like Knuth-Morris-Pratt (KMP). 

 Additionally, the Boyer-Moore algorithm's ability to handle 
large and varied data sets makes it suitable for applications 
involving integer matrices, such as image processing and data 
analysis. The algorithm's efficiency can be mathematically 
represented and compared with other algorithms. For instance, 
the average-case time complexity of Boyer-Moore is O(n/m), 
where n is the length of the text and m is the length of the 
pattern, compared to KMP's O(n) time complexity. This 
reduction in complexity highlights Boyer-Moore's ability to 
handle larger datasets more effectively by leveraging its 
preprocessing steps to minimize unnecessary comparisons. 

 To illustrate the efficiency of Boyer Moore algorithm, we 
will consider the average time complexity. For Boyer Moore 
algorithm the time complexity is the following: 

TBM = O(n/m) 

 Where n is the number of elements in the radar data matrix 
and m is the number of elements in the pattern matrix. In 
contrast, the Knuth Morris Pratt algorithm has a time 
complexity of the following: 

TKMP = O(n) 

 Where n is the number of elements in the matrix data. But 
the key advantage of the Boyer Moore algorithm is it’s ability 
to skip sections of the matrix given the matrix is an integer 
matrix. Suppose we have an N x N size of data matrix and an 
M x M size of a pattern matrix, then the total comparisons for 
Knuth Morris Pratt would be the following: 

CKMP = N2 

 For Boyer Moore algorithm, considering it skips a 
significant chunk of comparison due to the looking glass and 
mismatches, the number of comparisons is approximately the 
following: 

CBM = O(N2/M2) 

 This shows that for larger matrices with substantial 
differences between elements, Boyer Moore will perform much 
fewer comparisons comparing to Knuth Morris Pratt, making it 
a superior algorithm in comparing matrices of integer. 

IV. ANALYSIS 

Given the codes and the Boyer Moore algorithm, we 
enhanced the original pattern matching algorithm by adding the 
ability to handle multiple patterns. This lets us test the 
algorithm's effectiveness with different shapes and sizes, 
ensuring a more thorough evaluation of its performance in 
detecting various features within radar data. 

To do this, we defined several patterns, each with different 
shapes and sizes, to simulate real scenarios in radar data 

analysis. These patterns include asymmetrical shapes like 
triangles and diamonds, which help test the algorithm's ability 
to handle complex structures. 

Here are the patterns we are using to simulate: 

 With the given pattern, we have the following results: 

 In other instances, the following result is received 

 

patterns = [ 
    [ 
        [1, 0, 0], 
        [1, 1, 0], 
        [1, 1, 1] 
    ], 
    [ 
        [1, 2, 1], 
        [2, 2, 2], 
        [1, 2, 1] 
    ], 
    [ 
        [3, 1, 2, 1, 3], 
        [1, 4, 3, 4, 1], 
        [3, 3, 5, 3, 3], 
        [1, 4, 3, 4, 1], 
        [3, 1, 2, 1, 3] 
    ] 
] 

Pattern 1 found starting at coordinates: (8, 
10) 
Hamming distance percentage of closeness: 
100.00% 
Pattern 2 found starting at coordinates: (3, 8) 
Hamming distance percentage of closeness: 
44.44% 
Pattern 3 found starting at coordinates: (1, 8) 
Hamming distance percentage of closeness: 
36.00% 
 
Generated Radar Data Matrix: 
[0, 0, 0, 0, 0, 0, 1, 2, 4, 4, 4, 4, 4, 3, 2] 
[0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 3, 1, 1, 0] 
[0, 0, 0, 1, 1, 2, 3, 5, 5, 5, 5, 5, 4, 3, 2] 
[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 5, 5, 3, 2, 2] 
[0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 5, 4, 2, 2, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1, 1, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 3, 2, 2, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
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 And in some other, it results no match due to the lack of 
object generated in the matrix. 

 

 

 In our analysis, we tested multiple patterns, each of which 
could represent different types of aircraft or other objects. For 
instance, one pattern might correspond to the radar cross-
section (RCS) of a Boeing 737, another to an Airbus A380, and 
a smaller pattern to a ballistic missile. These patterns help us 
simulate realistic scenarios in radar data analysis where 
detecting specific types of objects is crucial. 

 By applying the Boyer-Moore 2D search algorithm to the 
generated radar data, we determined the best match location 
and the percentage of closeness for each pattern. These 
patterns, representing various aircraft types, were effectively 
identified within the radar data matrix, demonstrating the 
algorithm's capability to handle diverse objects. In practice, 
each pattern could represent an aircraft type, such as the 
Boeing 737 or Airbus A380 for larger patterns, and a ballistic 
missile for smaller patterns. 

 For example, in our tests, a smaller pattern resembling a 
ballistic missile yielded the highest accuracy. A pattern 
representing a medium-sized aircraft like a Boeing 737 was 
found with a good degree of accuracy. However, the largest 
pattern, resembling an Airbus A380, had the lowest accuracy. 
This result suggests that while the Boyer-Moore algorithm is 
proficient in detecting large objects, the complexity and size of 
such patterns can introduce challenges that reduce accuracy. 

 In real-world applications, the radar cross-section (RCS) of 
objects is much more complex than our simulated patterns. The 
actual RCS varies with aspect angle, frequency, and other 
factors, leading to more detailed and accurate detection results. 
Despite this complexity, our test results demonstrate that the 
Boyer-Moore algorithm can effectively match patterns of 
different sizes and shapes in radar data. With further 
refinement and more sophisticated pattern definitions, the 
algorithm can achieve even higher accuracy in real-world 
scenarios, making it a valuable tool for radar data analysis and 
object detection. This ability to handle complex and varied 
patterns ensures that the Boyer-Moore algorithm is not only 
effective in theoretical tests but also holds significant promise 
for practical implementations in detecting and identifying 
various types of aircraft and missiles. 

V. CONCLUSION 

The Boyer-Moore algorithm is effective for pattern 
matching in radar data.  

Our tests with different patterns, representing various 
aircraft and missiles, showed that the algorithm can accurately 
find objects of different sizes and shapes. Smaller patterns, like 
those for ballistic missiles, had high accuracy, while larger 
patterns, like those for an Airbus A380, had some challenges 
but still gave good results. This shows that the Boyer-Moore 
algorithm is flexible and can meet various detection needs in 
radar data.  

With more adjustments, such as better pattern definitions 
and considering real-world radar cross-sections, the algorithm's 
accuracy and effectiveness can improve a lot. This means the 
Boyer-Moore algorithm could become a very reliable tool for 
finding and identifying a wide range of objects in real radar 
applications. 

Pattern 1 found starting at coordinates: (10, 
6) 
Hamming distance percentage of closeness: 
88.89% 
Pattern 2 found starting at coordinates: (6, 4) 
Hamming distance percentage of closeness: 
55.56% 
Pattern 3 found starting at coordinates: (4, 5) 
Hamming distance percentage of closeness: 
36.00% 
 
Generated Radar Data Matrix: 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 1, 2, 2, 1, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 2, 4, 2, 1, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 1, 3, 4, 3, 1, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 2, 2, 2, 4, 4, 3, 1, 1, 1, 1, 1, 1] 
[0, 0, 0, 0, 1, 2, 3, 2, 2, 0, 0, 0, 0, 0, 0] 
[1, 2, 2, 2, 2, 2, 3, 2, 1, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 

Pattern 1 found starting at coordinates: (4, 0) 
Hamming distance percentage of closeness: 
55.56% 
Pattern 2 found starting at coordinates: (11, 
3) 
Hamming distance percentage of closeness: 
44.44% 
Pattern 3 found starting at coordinates: (9, 0) 
Hamming distance percentage of closeness: 
28.00% 
 
Generated Radar Data Matrix: 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[5, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[5, 3, 3, 3, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[5, 3, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[4, 4, 4, 3, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[4, 4, 2, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
[4, 3, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] 
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